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Abstract

We prove that UPC condition holds in o-minimal structures generated by some quasi-analytic
classes 0%° functions. We also give a sufficient and necessary condition for a boundedsét?
definable in some polynomially bounded o-minimal structure to be UPC.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In [9], Pawtucki and Plesniak introduced the notion of an uniformly polynomially cuspidal
(UPC) set. Recall that c R" is called UPC if there exisk, M > 0 and a positive integer
d such that for each € E we can choose a polynomial map : R — R" of degree at
mostd satisfying the following conditions:

(1) h.’( (O) = xv
(2) dist(hy(r), R"\ E)>M¢" forall r € [0, 1].
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(Note that a UPC sef is fat—that iSE = Int E.) The importance of UPC property lies
in the fact that it is a geometric sufficient condition for Markov’s inequality—that was
proved by Pawtucki and Plesniak. Other applications can be fouri#l, 19]. Pawtucki
and Plesniak proved as well that each bounded, fat and subanalytic set is UPC. (Detailed
study of subanalytic sets can be foundllif) Their approach involved two important tools:
Hironaka’s rectilinearization theorem and tojasiewicz’s inequality. The first purpose of
this paper is to generalize the main result of Pawtucki and Ple$8jak some particular
o-minimal structures, namely these o-minimal structures that are considgtEt].ifSee
[4,5] for the definition and properties of o-minimal structures.) Given a dasd C*°
functions satisfying some properties (the most important is quasi-analyticity) Rolin et al.
[12] constructed a polynomially bounded o-minimal structi@¢e In Section 2 we prove
UPC condition for all bounded, fat and definable set&¢n

Of course, we are interested in UPC property in general o-minimal structures. We will say
that UPC condition holds in some o-minimal structurd is UPC wheneveA is bounded,
definable and fat. The problem is to characterize o-minimal structures for which UPC con-
dition holds. The related question is to characterize UPC definable sets. Clearly, UPC con-
dition cannot hold in an o-minimal structure which is not polynomially bounded, because
by the growth dichotomy the sét := {(x1, x2) € R?|0 < x1<1, 0<x2 < exp(—x; D)}
is definable in such structure (¢7]). Thus we restrict ourselves to polynomially bounded
o-minimal structures. But UPC condition may not hold, even though the structure is poly-
nomially bounded.

Example 1.Let A = {(x1,x2) € R?| f(x1) <x2<g(x1), x1 € [0, 1]}, wheref (u) =

o0
1
Z Eul_% foru € [0, 1]andg(u) = f(u) + u. One easily verifies th& is not UPC, but

i=1
it is definable in some polynomially bounded o-minimal structure[@dj.

Example 2. Let B = {(x1,x2) € R?| xi/ﬁgngxiﬁ +x2, x1 € [0, 1]}. ThenB is
definable in a polynomially bounded o-minimal structure ), but it is not UPC.

Dealing with general definable sets we moreover restrict ourselves to dimension two. It
seems that the case of higher dimensions is much more difficult. The second main result of
this paper is a characterization of bounded and plane UPC sets definable in polynomially
bounded o-minimal structures (Section 4). Taking into account that UPC property implies
Markov’s inequality, one should say that this is connected with the paper of Goetgheluck
[3] who has first proved Markov’s inequality on some particular subsef efith cusps.

We conclude this section with stating the two main results:

Theorem A. UPC condition holds iR¢.

Theorem B.Let A C R? be bounded and definable in some polynomially bounded o-
minimal structure. Then A is UPC if and only if A is fat and the following condition is
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satisfiedfor eacha € A, r > 0and any connected component S of thdrsed N B(a, r)
such thatz € S there is a polynomial ar¢ : (0, 1) — S such thatlimoy(z) = a, where
—

B(a,r)={x e R?: lx —all <r}.

2. UPC Property in Rc

Forr = (r1,...,r,) € (0,00)" putl, = (—r1, r1) X --- X (—ry, ry). Suppose that for
every compact boB = [a1, b1] X -+ X [ay,, by], Wherea; < b; fori =1, ..., nand
n € N, we have arR-algebraCp of functionsf : B — R satisfying the properties listed
on p. 762 in[12]. Recall only the most important one—quasi-analyticity:

Tp : C, — R[[X]] is a monomorphism oR-algebras, wher€, is the collection of
germs at the origin of functions frotn/{C,, , : r € (0, c0)"} andTy(f) is the Taylor series
of fat the origin (G, := Cy).

LetF = (J{Cp1: n e N}and putRe = R(F). (If e = (¢, ..., &) € (0, 00)", then we
write C,, ; instead ofC,, z.)

Theorem 2.1(Rolin et al.[12]). The structureR¢ is model complet@-minimal and poly-
nomially bounded.

Proof. Cf. [12, Theorems 5.2, 5.4]. O

We say thata map € C,, isNCIif f(x) = xfl Xyt g(x), g €Cpy, s> (5> 17
fori =1, ..., n), gx) #0foreachxy € I, anday, ..., o € N.
The following theorem is due to Bierstone and Milman:

Theorem 2.2. Suppose thaf € C, . and f # 0.Then there is a familylI ;} of mappings
such thatfor each j,IT; € (Cy,))", ;(I,;) C I, foll;isNCandif0 <s;<r; (as

polyradii),then the union of some finite subfamily ofthefar{rﬂy(fj)} isaneighbourhood
of the origin.

Proof. Cf. [2, Theorem 2.4]. The theorem is also a simple consequence of Theorem 2.5 in
[12]. O

AsetA C R"is called easic C-seif there aref, g1, ..., gk € Cy.r,r € (0, 00)" such
thatA = {x € I, | f(x) =0, g1(x), ..., gx(x) > 0}. A finite union of basic C-sets is
called aC-set. The seAis calledC-semianalytidf for eacha € R" thereis an € (0, c0)”
such thatA —a) N I, is a C-set.

Theorem 2.3. Let E C R" be C-semianalytic and le&k c R" be compact. Then there is

a finite family of mappingé#/;  (C, 1)" such thaU IT;([-1, 11") is a neighbourhood
J

of the set K andfor each j,ijl(E) is a union of sets of the form

{x e [-1, 11" : sgnx; = g;}, 0 € {—1, 0, 1}".
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Proof. Note first that it is enough to prove the theorem in the case whé&na point.
Moreover, we can assume thiit= {0}. For some: € (0, co)" we have

ENle=|Jxele: fix) =0, gi(x) > 0},
k

where fi, gir € C,.. and without loss of generality they are not identically zero. Put
£ =[] fi-]]sgir- Now we apply Theorer@.2. We may assume that eahis equal to

k ik
(=1, 1" andthateaclfy oIl ;, gixoll;is NC.The restofthe proofis now straightforward.
O

Theorem 2.4(cf. Pawtucki and Plesnialo, Corollary 6.2]). Let F ¢ R" be bounded and
C-semianalytic and leE = II(F) c R, wherell : R" — R is the projection onto
the subspace of first k coordinates. Then there exists a finite family of maggings

(Co, )k, j=1, ..., ssuchthat?;((~1, 1y") C E foralljand | ] ¥;(-1, 1]") =
j=1
E.

Proof. We can assume thd& has no isolated points. Applying TheoreaB to F and

K = F we obtain a family{/1,}, j = 1, ..., s. For eachj, H;l(F) is the union of sets
Tjy = {x € [-1, 1]" : sgnx; = «;} with somex = (a, ..., %,) € {—1, 0, 1}". For all

Ty, # {0}, take H;, := Int T;,, where the interior is taken in the linear span of the set
Tjo. Let¥jy = IT o I |7~ Clearly,|J ¥,x(Hjs) C E and{J ¥ (H;,) = E. We may
assume thatl;, = (—1, 1y"». O

Theorem 2.5. Suppose that an open s€t c R is the projection ontd®* of some C-
semianalytic and bounded subsefi§f. Then?2 is UPC.
Proof. We follow the proof of Theorem 6.4 if9]. Fix a positive integep and let

gp -1, 1P x[0, 11> (x,n) = (x1(1—1), ..., xp(L—1)) € [-1, 1]°.
Note thatg,([—1, 117 x (0, 1]) C (-1, 1)? andg,([—1, 1]” x {0}) = [—1, 1]7. By the
previous theorem, there exi#t; € (Cn/.,l)", j=1, ..., s, suchthat

[A-1,11Y x 0, 1) c Q| f0-1, 11" x (o) = Q,

j=1

where f; = ¥; o g,,;. By the Lojasiewicz inequality, there a¢, m > 0 such that
dist(f; (x, 1), Rk \ Q=>Ci" for x € [-1,1]% andt € [0, 1]. Take a positive
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integerd > m and fixj. We have

d g f
fie.n=> j a0+ 170 (x, 1),
=0

whereQ; is C* in a neighbourhood of the spt1, 11%/ x [0, 1]. Choose’ € (0, 1]ina
C
way such thaflQ; (x, t)|| < 5 for (x, 1) € [-1, 1] x [0, &]. Then

m

dist(f; (x, or) — 0 14+1Q  (x, o1), RE\ Q) > %z’"

forx € [-1, 11", t € [0, 1]. The end of the proof is now obvious.[]

Proof of Theorem A. It follows from the way Theoren2.1is proved in[12] that each
bounded and definable setlity is the projection of some bounded afiesemianalytic set.
Thus itis enough to use Theorelrb. [

Remark. Theorem A gives along with Theorem 3.1[B] the positive answer to Question
3.8in[11] posed by Plesniak and concerning Markov’s inequality.

3. A necessary condition for UPC property

We will say that an o-minimal structui® admits polynomial curve selection if for each
open and definable sétin S and for eacla € Q2 thereis a polynomial arg: (0, 1) — Q
such that Iirg)‘r/(t) = a. Note that only polynomially bounded o-minimal structures may

t—

admit polynomial curve selection. Clearly, if UPC condition holdsSinthen it admits
polynomial curve selection. We do not know whether the reverse implication is true. The
related question is the following: suppose that a bounded and definalifepesisesses

the property that for each € E there is a polynomial arg : (0, 1) — Int E such that
tlimoy(t) = a—isthenE a UPC set?. The example below shows that this is not the case even

if we restrict ourselves to polynomially bounded o-minimal structures, but first we state the
following lemma:

d .
Lemma 3.1. Suppose that a bounded getc R" is UPC and leth, (1) = E N (x)r
i=0

for (x,t) € E x [0, 1] be any polynomial map satisfying the definition of a UPC set. Then
each functlom" E — Ris boundedwhereq; (x) = (al(x) ., al(x)).
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Proof. For eachk € {1, ..., n} consider the system of linear equations

d
N =nGTh, =1 d+ 1
i=0

wherez; are the unknowns. By Cramer’s rule, we get the only solutjos af x), i =
0, ..., d, bounded, as required.

Example 3.Let A = A1 U Ay, whereA; = {(x1, x2) € [R2| xiﬁgxzéxiﬁ —l—xf, 0<x1
<1}andA; = [—1, 0] x [-1, O]. Suppose thaA is UPC and thak, () is a polynomial
d

map from the definition of UPC. For € N\ {0}, let h,(t) = hym (1) = Y ai(m)t’,
i=0
wherex(n) = (n_l,n_ﬁ). By Lemma3.1, for eachi = 0, 1, ..., d, the sequence

a;(n) is bounded. We can assume that it is convergent anditlyat — a; asn — oo.
d

Since disth, (1), RZ\A1)>th,hencedis<Z ait', R\ Al) > M1t™ . Clearlyi(t) :=
i=0

d .

Zait’ € Int A1 for ¢ € (O, 1], andh(0) = (0, 0). This is a contradiction (cf. Example 2).

i=0

We will say that a polynomially bounded o-minimal structure satisfies the property (P)
if:
For each definablg : (0, ¢) — R such that Iiryf(t) = 0 and for eaclr > 0 there
t—
existci, ..., ¢y € Randrationaky, ..., ry € (0, +00) such thatf(¢) = c1t"* + --- +
ckt™ +o(t") ast — 0T,
Recall now a result due to C. Miller:

Theorem 3.2(cf. Miller [8]). Letf : R — R be definable in some polynomially bounded
o-minimal structure. Then thereiise R such that eitherf (¢) = 0 for all sufficiently small
positive t,or f(t) = ct” + o(t") ast — 0" for somec € R\ {0} and the function
(0, +00) > 1 > t" € Ris definable.

The following theorem gives a sufficient and necessary condition for a polynomially
bounded o-minimal structure to admit polynomial curve selection.

Theorem 3.3. LetS be a polynomially bounded o-minimal structure. Tideadmits poly-
nomial curve selection if and only if it satisfies the propé&y.

Proof. Assume then tha satisfies the property (P). L&t C R" be open, definable ifi and

takea € Q. We can assume that= 0. By curve selection and the tojasiewicz inequality

there exists a definable map= (g%, ..., ¢") : (0, 1) — Q such that Iiryg(t) = 0and
t—

dist(g(r), R"\ Q) > M™ with some positive constanig, m. If we apply the property (P)
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foreachg’/ andr = m, thenwe obtaimy, ..., c; € R"andrationaty, ..., ri € (0, +00)
k
such that dis Z c;t"7, R"\ Q| > 0 fortsmall enough. The existence of the required
j=1

polynomial curve is now obvious.

Suppose now that admits polynomial curve selection. Note first that the i@apt+oo) >
t — 1t € Ris definable if and only i¥ € Q. If we assume that this is not the case, then
the setB = {(x1, x2) € R?| x§ < x2 < 2x, x1 € (0, 1)}, for somes € (0, +00) \ Q, is
definable. This is, however, impossible since there is no polynomigl a6, 1) — B
such that Iircr)r/(t) = (0,0). Let f : (0, &) — R be definable and Iionf(t) = 0. Take

— t—

anyr > 0. If f(r) = 0O for all sufficiently small positive, then clearlyf (r) = o(t") as
t — 0T, If £(r) # O for all sufficiently small positive;, then applying Theorer®.2we get
a1 € R\ {0} andr; € Rsuchthatf () = a1t 4+ o(t't) ast — O*. Obviously,-; > 0. We
do the same thing withf () — a1t". Again eitherf () — ayt"t = 0 for all t small enough
(and then we stop), or we use Theor8mgetting f (t) —ait™ = axt"2 4 o(t'2) ast — 0T,
whereaz € R\ {0} andr2 € R. Note thatr, > r1. We continue this process. If it stops
at some point, therf (1) = a1t + - - - + axt"* for t small enough and in this case clearly
f@) =at™ +---+at"™ +o(t") ast — 0T, If the process does not stop, then we obtain
a sequencéz; } of nonzero real numbers and an increasing sequence of positive rationals
{r;}. Letx := ‘”T rj € (0, +00) U {4-00}.

J—>T00

I

Casel: k = +oo. Then putl := min{j : r;>r}. Obviously, f (r) = Zajt’f +o(t")

j=1
ast — 0T,

Case2: k < +oo. Let u>« be rational. Then the s&f = {(x1, x2) € R2| fx1) <
x2 < f(x1) + xf, x1 € (0, ¢)} is definable, but this contradicts the assumption that
admits polynomial curve selection, since there is no polynomiap ai®, 1) — K such
thattlirray(t) =(0,00. 0O

The above theorem and its proof allow to better understand the meaning of the two
examples given in the Introduction and their connection with The@&&mand the property

(P).

4. UPC condition on the plane

In this section, we give a proof of Theorem B which can be regarded as a characterization
of bounded and plane UPC sets definable in polynomially o-minimal structures.

Suppose thatt ¢ B c R". We say thaf is UPCwith respect to Bf there exist positive
constants\, m and a positive integedt such that for each point € A we can choose a
polynomial map:z, : R — R” of degree at most satisfying the following conditions:

(1) hx(0) = x,
(2) dist(h,(r), R*\ B)y>M:t" forall ¢ € [0, 1].



32 R. Pierzchata / Journal of Approximation Theory 132 (2005) 25-33
Clearly,Ais UPC ifAis UPC with respect to itself.

Lemma 4.1. Letg, h : [0, b] — R be continuous and definable in some polynomially
bounded o-minimal structurg(0) = #(0) = Oandh > gon (0, b]. Suppose thap,, ¢, :

[0, 1] — R are polynomial functions,(0) = ¢,(0) = 0, ¢4([0, 1]) =[O, a], 0 <

a <bandh(p1(s)) > Po(s) > g(P1(s)) fors € (0, 1]. Let

A = {(x1,x2) € R?| x1 € [0, b], g(x1)<x2<h(x1)).

Then there is a neighbourhood U (@, 0) in A such that U is UPC with respect to A.

Proof. Without loss of generality we may assume that /o ¢4 — ¢, are strictly increasing
andg o ¢4 — ¢, is strictly decreasing of0, 1] (by the monotonicity theorem). Take €

[o, %] andx; € [g(x1), h(x1)]. Put

Wi () = (1 (w), o) + x2 — Ppp(d7 (x1))), u € [ (x1), 1].

Note thatg(¢1(u)) < ¢p(u) + x2 — Po(Pp7 (x1)) < h(dy(w)) for u € (7 (x1), 11.
Moreover, Wy, . (¢1 (x1)) = (x1, x2). Let

Plagip) (1) = Wiy o (L= D7 (x1) + 1), 1 € [0, 1].

The map(xy, x2, t) = Py xy) (1) is continuous and definabl®,, ,)(0) = (x1, x2). Note
that dis{ Py, ) (1), R? \ A) = 0 impliesr = 0. Now it is enough to use the tojasiewicz
inequality. O

Proof of Theorem B.Suppose tha satisfying the assumptions of the theorem is UPC and
takea = (a1, ap) € A, r > 0. LetSbe any connected component of the sednt B(a, r)
such thatz € S. Take a cell decomposition &2 that partitionsS, A, B(a, r), {a} and
that is minimal with respect t&. This means that if we have two open célfs ¢) and
(g, h) contained irSsuch that the graph(g) of gis also contained i, then replace them
by (f, h).

Let C c S be an open cell such that € C. Suppose that there is no polynomial
arcy : (0, 1) — C such thatt Iir&w(r) = a. Leto, ¥ : (2, /) — R be such that

C = (o, ). Clearly,a; = o ora; = §. We may assume thaj = «. It is easy to see that
z”maq’(t) = [Iimx Y (1) = az (since the o-minimal structure is polynomially bounded). Put
b d —>(

= {p} x [s1, s2], wheres; = Iimﬁ(p(t) andsy = Iimﬁw(t) (if s1 = s2, then[sq, s2] :=
t— —

{s1)). Take anyy € (o, f) and putL := {(x1, x2) € R?| 2x2 = @(x1) + Y(x1), x1 €
(o, n)}. For the seA we choosé:, m, M from the def|n|t|on of a UPC set. Note first that

there is some constafite (0, 1] such that|A,(r) — x|| < <— forallx € A andr € [0, 0],

wherec := dist(L, K) (it follows from Lemma3.1). Thus disth, (1), K)> > forx e L
and: € [0, 0]. LetC1, Co denote the two open cells that lie, respectively, just below and
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just above the celC. Note thatl'(¢) is disjoint fromA or C1 is disjoint fromA. Similarly

I'(y) is disjoint fromA or C; is disjoint fromA. Assume, for example, that(p) C A and

C1 C A. One can easily see that the open and connectetset () U C is contained in

S. This is, however impossible, since our cell decomposition is minimal with resp8ct to
All this easily implies that dist:, (1), R? \ C) > min [th, g} >M't" for x € L and

t € [0, 0], whereM’ is some positive constant. Now the situation is essentially the same as

in Example 3 and it is enough to use the same reasoning to get a contradiction.
The reverse implication in Theorem B follows from Lemeha. O

Remark. It follows from Theorems B an@8.3 that if a polynomially bounded o-minimal
structure satisfies the condition (P), then any bounded, fat and definable subsBt is
UPC.
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