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Abstract

We prove that UPC condition holds in o-minimal structures generated by some quasi-analytic
classes ofC∞ functions. We also give a sufficient and necessary condition for a bounded setA ⊂ R2

definable in some polynomially bounded o-minimal structure to be UPC.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In [9], Pawłucki and Pleśniak introduced the notion of an uniformly polynomially cuspidal
(UPC) set. Recall thatE ⊂ Rn is called UPC if there existm, M > 0 and a positive integer
d such that for eachx ∈ E we can choose a polynomial maphx : R −→ Rn of degree at
mostd satisfying the following conditions:

(1) hx(0) = x,
(2) dist(hx(t), Rn \ E)�Mtm for all t ∈ [0, 1].
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(Note that a UPC setE is fat—that isE = IntE.) The importance of UPC property lies
in the fact that it is a geometric sufficient condition for Markov’s inequality—that was
proved by Pawłucki and Pleśniak. Other applications can be found in[9,10]. Pawłucki
and Pleśniak proved as well that each bounded, fat and subanalytic set is UPC. (Detailed
study of subanalytic sets can be found in[1].) Their approach involved two important tools:
Hironaka’s rectilinearization theorem and Łojasiewicz’s inequality. The first purpose of
this paper is to generalize the main result of Pawłucki and Pleśniak[9] to some particular
o-minimal structures, namely these o-minimal structures that are considered in[12]. (See
[4,5] for the definition and properties of o-minimal structures.) Given a classC of C∞
functions satisfying some properties (the most important is quasi-analyticity) Rolin et al.
[12] constructed a polynomially bounded o-minimal structureRC . In Section 2 we prove
UPC condition for all bounded, fat and definable sets inRC .

Of course, we are interested in UPC property in general o-minimal structures. We will say
that UPC condition holds in some o-minimal structure ifA is UPC wheneverA is bounded,
definable and fat. The problem is to characterize o-minimal structures for which UPC con-
dition holds. The related question is to characterize UPC definable sets. Clearly, UPC con-
dition cannot hold in an o-minimal structure which is not polynomially bounded, because
by the growth dichotomy the setE := {(x1, x2) ∈ R2 | 0 < x1�1, 0�x2� exp(−x−1

1 )}
is definable in such structure (cf.[7]). Thus we restrict ourselves to polynomially bounded
o-minimal structures. But UPC condition may not hold, even though the structure is poly-
nomially bounded.

Example 1.Let A = {(x1, x2) ∈ R2 | f (x1)�x2�g(x1), x1 ∈ [0, 1]}, wheref (u) =
∞∑
i=1

1

2i
u1−1

i for u ∈ [0, 1] andg(u) = f (u)+ u. One easily verifies thatA is not UPC, but

it is definable in some polynomially bounded o-minimal structure (cf.[6]).

Example 2. Let B = {(x1, x2) ∈ R2 | x
√

2
1 �x2�x

√
2

1 + x2
1, x1 ∈ [0, 1]}. ThenB is

definable in a polynomially bounded o-minimal structure (cf.[6]), but it is not UPC.

Dealing with general definable sets we moreover restrict ourselves to dimension two. It
seems that the case of higher dimensions is much more difficult. The second main result of
this paper is a characterization of bounded and plane UPC sets definable in polynomially
bounded o-minimal structures (Section 4). Taking into account that UPC property implies
Markov’s inequality, one should say that this is connected with the paper of Goetgheluck
[3] who has first proved Markov’s inequality on some particular subsets ofR2 with cusps.

We conclude this section with stating the two main results:

Theorem A.UPC condition holds inRC .

Theorem B. Let A ⊂ R2 be bounded and definable in some polynomially bounded o-
minimal structure. Then A is UPC if and only if A is fat and the following condition is
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satisfied:for eacha ∈ A, r > 0 and any connected component S of the setIntA ∩B(a, r)
such thata ∈ S there is a polynomial arc� : (0, 1) −→ S such thatlim

t→0
�(t) = a, where

B(a, r) = {x ∈ R2 : ‖x − a‖ < r}.

2. UPC Property in RC

For r = (r1, . . . , rn) ∈ (0,∞)n put Ir = (−r1, r1)× · · · × (−rn, rn). Suppose that for
every compact boxB = [a1, b1] × · · · × [an, bn], whereai < bi for i = 1, . . . , n and
n ∈ N, we have anR-algebraCB of functionsf : B −→ R satisfying the properties listed
on p. 762 in[12]. Recall only the most important one—quasi-analyticity:
T0 : Cn −→ R[[X]] is a monomorphism ofR-algebras, whereCn is the collection of

germs at the origin of functions from
⋃{Cn,r : r ∈ (0,∞)n} andT0(f ) is the Taylor series

of f at the origin (Cn,r := CIr ).
Let F = ⋃{Cn,1 : n ∈ N} and putRC = R(F). (If � = (�, . . . , �) ∈ (0, ∞)n, then we

writeCn,� instead ofCn,�.)

Theorem 2.1(Rolin et al.[12]). The structureRC is model complete,o-minimal and poly-
nomially bounded.

Proof. Cf. [12, Theorems 5.2, 5.4]. �

We say that a mapf ∈ Cn,r is NC if f (x) = x�1
1 . . . x

�n
n g(x), g ∈ Cn,s, s > r (si > ri

for i = 1, . . . , n), g(x) �= 0 for eachx ∈ Is and�1, . . . , �n ∈ N.
The following theorem is due to Bierstone and Milman:

Theorem 2.2. Suppose thatf ∈ Cn,ε andf �= 0.Then there is a family{�j } of mappings
such that,for each j,�j ∈ (Cn,rj )n, �j (Irj ) ⊂ Iε, f ◦ �j is NC and if0 < sj�rj (as
polyradii),then theunionof somefinite subfamily of the family{�j (Isj )} is aneighbourhood
of the origin.

Proof. Cf. [2, Theorem 2.4]. The theorem is also a simple consequence of Theorem 2.5 in
[12]. �

A setA ⊂ Rn is called abasic C-setif there aref, g1, . . . , gk ∈ Cn,r , r ∈ (0, ∞)n such
thatA = {x ∈ Ir | f (x) = 0, g1(x), . . . , gk(x) > 0}. A finite union of basic C-sets is
called aC-set. The setA is calledC-semianalyticif for eacha ∈ Rn there is anr ∈ (0, ∞)n
such that(A− a) ∩ Ir is a C-set.

Theorem 2.3. LetE ⊂ Rn be C-semianalytic and letK ⊂ Rn be compact. Then there is
a finite family of mappings�j ∈ (Cn,1)n such that

⋃
j

�j ([−1, 1]n) is a neighbourhood

of the set K and,for each j,�−1
j (E) is a union of sets of the form

{x ∈ [−1, 1]n : sgnxi = �i}, � ∈ {−1, 0, 1}n.
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Proof. Note first that it is enough to prove the theorem in the case whenK is a point.
Moreover, we can assume thatK = {0}. For someε ∈ (0, ∞)n we have

E ∩ Iε =
⋃
k

{x ∈ Iε : fk(x) = 0, gik(x) > 0},

wherefk, gik ∈ Cn,ε and without loss of generality they are not identically zero. Put

f =
∏
k

fk ·
∏
i,k

gik. Now we apply Theorem2.2. We may assume that eachIrj is equal to

(−1, 1)n and that eachfk◦�j , gik◦�j is NC. The rest of the proof is now straightforward.
�

Theorem 2.4(cf. Pawłucki and Pleśniak[9, Corollary 6.2]). LetF ⊂ Rn be bounded and
C-semianalytic and letE = �(F ) ⊂ Rk, where� : Rn −→ Rk is the projection onto
the subspace of first k coordinates. Then there exists a finite family of mappings�j ∈
(Cnj ,1)

k, j = 1, . . . , s, such that�j ((−1, 1)nj ) ⊂ E for all j and
s⋃
j=1

�j ([−1, 1]nj ) =

E.

Proof. We can assume thatE has no isolated points. Applying Theorem2.3 to F and
K = F we obtain a family{�j }, j = 1, . . . , s. For eachj, �−1

j (F ) is the union of sets
Tj� = {x ∈ [−1, 1]n : sgnxi = �i} with some� = (�1, . . . , �n) ∈ {−1, 0, 1}n. For all
Tj� �= {0}, takeHj� := Int Tj�, where the interior is taken in the linear span of the set
Tj�. Let �j� = � ◦ �j |Hj� . Clearly,

⋃
�j�(Hj�) ⊂ E and

⋃
�j�(Hj�) = E. We may

assume thatHj� = (−1, 1)nj� . �

Theorem 2.5. Suppose that an open set� ⊂ Rk is the projection ontoRk of some C-
semianalytic and bounded subset ofRn. Then� is UPC.

Proof.We follow the proof of Theorem 6.4 in[9]. Fix a positive integerp and let

gp : [−1, 1]p × [0, 1] � (x, t) �→ (x1(1 − t), . . . , xp(1 − t)) ∈ [−1, 1]p.

Note thatgp([−1, 1]p × (0, 1])⊂ (−1, 1)p andgp([−1, 1]p × {0}) = [−1, 1]p. By the
previous theorem, there exist�j ∈ (Cnj ,1)k, j = 1, . . . , s, such that

fj ([−1, 1]nj × (0, 1])⊂ �,
s⋃
j=1

fj ([−1, 1]nj × {0}) = �,

wherefj = �j ◦ gnj . By the Łojasiewicz inequality, there areC, m > 0 such that

dist(fj (x, t), Rk \ �)�Ctm for x ∈ [−1, 1]nj and t ∈ [0, 1]. Take a positive
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integerd�m and fix j. We have

fj (x, t) =
d∑
%=0

t%

%!
�%fj
�t%

(x, 0)+ td+1Qj(x, t),

whereQj is C∞ in a neighbourhood of the set[−1, 1]nj × [0, 1]. Choose� ∈ (0, 1] in a

way such that‖tQj (x, t)‖� C
2

for (x, t) ∈ [−1, 1]nj × [0, �]. Then

dist(fj (x, �t)− �d+1td+1Qj(x, �t), Rk \ �)� C�m

2
tm

for x ∈ [−1, 1]nj , t ∈ [0, 1]. The end of the proof is now obvious.�

Proof of Theorem A. It follows from the way Theorem2.1 is proved in[12] that each
bounded and definable set inRC is the projection of some bounded andC-semianalytic set.
Thus it is enough to use Theorem2.5. �

Remark. Theorem A gives along with Theorem 3.1 in[9] the positive answer to Question
3.8 in[11] posed by Pleśniak and concerning Markov’s inequality.

3. A necessary condition for UPC property

We will say that an o-minimal structureS admits polynomial curve selection if for each
open and definable set� in S and for eacha ∈ � there is a polynomial arc� : (0, 1)−→ �
such that lim

t→0
�(t) = a. Note that only polynomially bounded o-minimal structures may

admit polynomial curve selection. Clearly, if UPC condition holds inS, then it admits
polynomial curve selection. We do not know whether the reverse implication is true. The
related question is the following: suppose that a bounded and definable setE possesses
the property that for eacha ∈ E there is a polynomial arc� : (0, 1) −→ IntE such that
lim
t→0

�(t) = a—is thenEa UPC set?. The example below shows that this is not the case even

if we restrict ourselves to polynomially bounded o-minimal structures, but first we state the
following lemma:

Lemma 3.1. Suppose that a bounded setE ⊂ Rn is UPC and lethx(t) =
∑d

i=0
ai(x)t

i

for (x, t) ∈ E × [0, 1] be any polynomial map satisfying the definition of a UPC set. Then
each functionaki : E −→ R is bounded,whereai(x) = (a1

i (x), . . . , a
n
i (x)).
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Proof. For eachk ∈ {1, . . . , n} consider the system of linear equations

d∑
i=0

(j−1)izi = hkx(j−1), j = 1, . . . , d + 1,

wherezi are the unknowns. By Cramer’s rule, we get the only solutionzi = aki (x), i =
0, . . . , d, bounded, as required. �

Example 3.LetA = A1 ∪A2, whereA1 = {(x1, x2) ∈ R2 | x
√

2
1 �x2�x

√
2

1 + x2
1, 0�x1

�1} andA2 = [−1, 0] × [−1, 0]. Suppose thatA is UPC and thathx(t) is a polynomial

map from the definition of UPC. Forn ∈ N \ {0}, let hn(t) = hx(n)(t) =
d∑
i=0

ai(n)t
i ,

wherex(n) = (n−1, n−√
2). By Lemma3.1, for eachi = 0, 1, . . . , d, the sequence

ai(n) is bounded. We can assume that it is convergent and thatai(n) → ai asn → ∞.

Since dist(hn(t), R2\A1)�Mtm, hence dist

(
d∑
i=0

ait
i , R2 \ A1

)
�Mtm. Clearly,h(t) :=

d∑
i=0

ait
i ∈ IntA1 for t ∈ (0, 1], andh(0) = (0, 0). This is a contradiction (cf. Example 2).

We will say that a polynomially bounded o-minimal structure satisfies the property (P)
if:

For each definablef : (0, ε) −→ R such that lim
t→0

f (t) = 0 and for eachr > 0 there

existc1, . . . , ck ∈ R and rationalr1, . . . , rk ∈ (0, +∞) such thatf (t) = c1t
r1 + · · · +

ckt
rk + o(tr ) ast → 0+.
Recall now a result due to C. Miller:

Theorem 3.2(cf. Miller [8]). Letf : R −→ R be definable in somepolynomially bounded
o-minimal structure. Then there isr ∈ R such that eitherf (t) = 0 for all sufficiently small
positive t,or f (t) = ctr + o(tr ) as t → 0+ for somec ∈ R \ {0} and the function
(0, +∞) � t �→ t r ∈ R is definable.

The following theorem gives a sufficient and necessary condition for a polynomially
bounded o-minimal structure to admit polynomial curve selection.

Theorem 3.3. LetS be a polynomially bounded o-minimal structure. ThenS admits poly-
nomial curve selection if and only if it satisfies the property(P ).

Proof.Assume then thatS satisfies the property (P). Let� ⊂ Rn be open, definable inS and
takea ∈ �. We can assume thata = 0. By curve selection and the Łojasiewicz inequality
there exists a definable mapg = (g1, . . . , gn) : (0, 1) −→ � such that lim

t→0
g(t) = 0 and

dist(g(t), Rn \�)�Mtm with some positive constantsM, m. If we apply the property (P)
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for eachgj andr = m, then we obtainc1, . . . , ck ∈ Rn and rationalr1, . . . , rk ∈ (0, +∞)

such that dist


 k∑
j=1

cj t
rj , Rn \ �


 > 0 for t small enough. The existence of the required

polynomial curve is now obvious.
Suppose now thatS admits polynomial curve selection. Note first that the map(0, +∞) �

t �→ t s ∈ R is definable if and only ifs ∈ Q. If we assume that this is not the case, then
the setB = {(x1, x2) ∈ R2 | xs1 < x2 < 2xs1, x1 ∈ (0, 1)}, for somes ∈ (0, +∞) \ Q, is
definable. This is, however, impossible since there is no polynomial arc� : (0, 1) −→ B

such that lim
t→0

�(t) = (0, 0). Let f : (0, ε) −→ R be definable and lim
t→0

f (t) = 0. Take

any r > 0. If f (t) = 0 for all sufficiently small positivet, then clearlyf (t) = o(tr ) as
t → 0+. If f (t) �= 0 for all sufficiently small positivet, then applying Theorem3.2we get
a1 ∈ R \ {0} andr1 ∈ R such thatf (t) = a1t

r1 + o(tr1) ast → 0+. Obviously,r1 > 0. We
do the same thing withf (t)− a1t

r1. Again eitherf (t)− a1t
r1 = 0 for all t small enough

(and then we stop), or we use Theorem3.2gettingf (t)−a1t
r1 = a2t

r2 +o(tr2) ast → 0+,
wherea2 ∈ R \ {0} andr2 ∈ R. Note thatr2 > r1. We continue this process. If it stops
at some point, thenf (t) = a1t

r1 + · · · + aktrk for t small enough and in this case clearly
f (t) = a1t

r1 + · · · + aktrk + o(tr ) ast → 0+. If the process does not stop, then we obtain
a sequence{aj } of nonzero real numbers and an increasing sequence of positive rationals
{rj }. Let 	 := lim

j→+∞ rj ∈ (0, +∞) ∪ {+∞}.

Case1: 	 = +∞. Then putl := min{j : rj�r}. Obviously,f (t) =
l∑
j=1

aj t
rj + o(tr )

ast → 0+.
Case2: 	 < +∞. Let 
�	 be rational. Then the setK = {(x1, x2) ∈ R2 | f (x1) <

x2 < f (x1) + x

1 , x1 ∈ (0, ε)} is definable, but this contradicts the assumption thatS

admits polynomial curve selection, since there is no polynomial arc� : (0, 1)−→ K such
that lim

t→0
�(t) = (0, 0). �

The above theorem and its proof allow to better understand the meaning of the two
examples given in the Introduction and their connection with Theorem3.2and the property
(P).

4. UPC condition on the plane

In this section, we give a proof of Theorem B which can be regarded as a characterization
of bounded and plane UPC sets definable in polynomially o-minimal structures.

Suppose thatA ⊂ B ⊂ Rn. We say thatA is UPCwith respect to Bif there exist positive
constantsM, m and a positive integerd such that for each pointx ∈ A we can choose a
polynomial maphx : R −→ Rn of degree at mostd satisfying the following conditions:

(1) hx(0) = x,
(2) dist(hx(t), Rn \ B)�Mtm for all t ∈ [0, 1].
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Clearly,A is UPC ifA is UPC with respect to itself.

Lemma 4.1. Let g, h : [0, b] −→ R be continuous and definable in some polynomially
bounded o-minimal structure,g(0) = h(0) = 0andh > g on(0, b].Suppose that�1, �2 :
[0, 1] −→ R are polynomial functions,�1(0) = �2(0) = 0, �1([0, 1]) = [0, a], 0 <
a < b andh(�1(s)) > �2(s) > g(�1(s)) for s ∈ (0, 1].Let

A = {(x1, x2) ∈ R2 | x1 ∈ [0, b], g(x1)�x2�h(x1)}.
Then there is a neighbourhood U of(0, 0) in A such that U is UPC with respect to A.

Proof.Without loss of generality we may assume that�1, h◦�1−�2 are strictly increasing
andg ◦ �1 − �2 is strictly decreasing on[0, 1] (by the monotonicity theorem). Takex1 ∈[
0,
a

2

]
andx2 ∈ [g(x1), h(x1)]. Put

W(x1,x2)(u) = (�1(u), �2(u)+ x2 − �2(�
−1
1 (x1))), u ∈ [�−1

1 (x1), 1].
Note thatg(�1(u)) < �2(u) + x2 − �2(�

−1
1 (x1)) < h(�1(u)) for u ∈ (�−1

1 (x1), 1].
Moreover,W(x1,x2)(�

−1
1 (x1)) = (x1, x2). Let

P(x1,x2)(t) = W(x1,x2)((1 − t)�−1
1 (x1)+ t), t ∈ [0, 1].

The map(x1, x2, t) �→ P(x1,x2)(t) is continuous and definable,P(x1,x2)(0) = (x1, x2). Note
that dist(P(x1,x2)(t), R2 \ A) = 0 impliest = 0. Now it is enough to use the Łojasiewicz
inequality. �

Proof of Theorem B.Suppose thatAsatisfying the assumptions of the theorem is UPC and
takea = (a1, a2) ∈ A, r > 0. LetSbe any connected component of the set IntA∩B(a, r)
such thata ∈ S. Take a cell decomposition ofR2 that partitionsS, A, B(a, r), {a} and
that is minimal with respect toS. This means that if we have two open cells(f, g) and
(g, h) contained inSsuch that the graph�(g) of g is also contained inS, then replace them
by (f, h).

Let C ⊂ S be an open cell such thata ∈ C. Suppose that there is no polynomial
arc � : (0, 1) −→ C such that lim

t→0
�(t) = a. Let 
, � : (�, �) −→ R be such that

C = (
, �). Clearly,a1 = � or a1 = �. We may assume thata1 = �. It is easy to see that
lim
t→�


(t) = lim
t→�

�(t) = a2 (since the o-minimal structure is polynomially bounded). Put

K := {�} × [s1, s2], wheres1 = lim
t→�


(t) ands2 = lim
t→�

�(t) (if s1 = s2, then[s1, s2] :=
{s1}). Take any� ∈ (�, �) and putL := {(x1, x2) ∈ R2 | 2x2 = 
(x1) + �(x1), x1 ∈
(�, �)}. For the setAwe chooseh, m, M from the definition of a UPC set. Note first that

there is some constant� ∈ (0, 1] such that‖hx(t) − x‖� c
2

for all x ∈ A andt ∈ [0, �],
wherec := dist(L, K) (it follows from Lemma3.1). Thus dist(hx(t), K)�

c

2
for x ∈ L

andt ∈ [0, �]. LetC1, C2 denote the two open cells that lie, respectively, just below and
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just above the cellC. Note that�(
) is disjoint fromA orC1 is disjoint fromA. Similarly
�(�) is disjoint fromA orC2 is disjoint fromA. Assume, for example, that�(
) ⊂ A and
C1 ⊂ A. One can easily see that the open and connected setC1 ∪ �(
)∪C is contained in
S. This is, however impossible, since our cell decomposition is minimal with respect toS.

All this easily implies that dist(hx(t), R2 \C)� min
{
Mtm,

c

2

}
�M ′tm for x ∈ L and

t ∈ [0, �], whereM ′ is some positive constant. Now the situation is essentially the same as
in Example 3 and it is enough to use the same reasoning to get a contradiction.

The reverse implication in Theorem B follows from Lemma4.1. �

Remark. It follows from Theorems B and3.3 that if a polynomially bounded o-minimal
structure satisfies the condition (P), then any bounded, fat and definable subsetA ⊂ R2 is
UPC.
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